α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement.
نویسندگان
چکیده
We here report on very high capacity (11,000 mA h g(-1)), superb rate capability (4500 mA h g(-1) at 5000 mA g(-1)) and high reversibility of Li-air batteries using α-MnO2 NW catalysts mainly associated with their relatively large amount of Mn(3+) exposed on the NW surface and a unique mechanism for deposition of discharge products. Our findings of the unprecedentedly fast Li ion transport and reversible formation-decomposition of discharge products attributed to the modified surface arrangement of α-MnO2 NWs suggest a strategy for achieving high-power Li-air batteries in combination with nano-architecture tailoring.
منابع مشابه
Critical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li–O2 Batteries: Surface Oxygen Density
Li−O2 batteries provide high-capacity energy storage, but for aprotic Li−O2 batteries, it is reported that the charge−discharge efficiency is ultimately limited by the crystal growth of insoluble Li2O2 on the porous cathode. Catalysts have been reported to improve the nucleation and morphology of Li2O2, which helps achieve high energy densities. We provide a new insight into the catalytic mecha...
متن کاملβ-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low overpotential for lithium-air batteries.
β-FeOOH nanorod (NR) catalysts prepared by ultrasonic-irradiated chemical synthesis enabled lithium-air cells to have high round-trip efficiency and extremely low overpotential as well as an outstanding rate capability. Good catalytic activities of the β-FeOOH NR bundle could be ascribed to its crystal structure, which consists of 2 × 2 tunnels formed by edge- and corner-sharing Fe(O,OH)6 octah...
متن کاملMnO2–graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium–sulfur batteries
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be ...
متن کاملα-MnO2 nanotubes: high surface area and enhanced lithium battery properties.
A simple one-step route for preparing α-MnO(2) nanotubes is reported. The α-MnO(2) nanotubes exhibit a high surface area of 226 m(2) g(-1) and reversible capacity of 512 mA h g(-1) at a high current density of 800 mA g(-1) after 300 cycles, as well as cycling stability when measured as an anode in lithium batteries.
متن کاملFreestanding graphene/MnO2 cathodes for Li-ion batteries
Different polymorphs of MnO2 (α-, β-, and γ-) were produced by microwave hydrothermal synthesis, and graphene oxide (GO) nanosheets were prepared by oxidation of graphite using a modified Hummers' method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X-ray diffraction (XRD) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 46 شماره
صفحات -
تاریخ انتشار 2013